AN UNUSUAL REARRANGEMENT OF EUDESMANE SKELETON

## Elena Tsankova

Institute of Organic Chemistry and Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

<u>Summary</u>: The lactone 5 was found to be a co-product of the BF<sub>3</sub> etherate induced cyclization of epoxyisogermacrone 2. The ketol 3 when treated with 100% HCOOH afforded the lactone 5 while under the same conditions the ketol 4 gave the corresponding ester 6. A mechanism is suggested for the rearrangements.

Recently, we reported the regio- and stereoselective cyclization of isogermacrone  $\underline{1}^1$ . In continuing our interest in this area, we further examined the acidand base-catalyzed cyclization of epoxyisogermacrone 2 leading mainly to formation of the eudesmane derivatives 3 and  $\underline{4}^2$ . In the present paper, we wish to describe the unexpected obtaining of the lactone 5 when treated epoxyisogermacrone 2 with BF<sub>3</sub> etherate, as well as the unusual rearrangement of the eudesmane skeleton of the ketol 3 into the same lactone 5.

On treatment with BF<sub>3</sub> etherate (equimolar amounts) at  $0^{\circ}$  for 45 min epoxyisogermacrone 2 was converted into the ketol 3 and the lactone 5 in 80.5 and 8.2% yields, respectively. The structure of the latter product was unambiguously determined on the basis of its spectral data, as follows:



m.p.  $72-74^{\circ}$  (from ether/hexane);  $C_{15}H_{22}O_{2}$  [ .../e 235 (M+H)<sup>+</sup>, 125 ( $C_{7}H_{9}O_{2}$ ), 109 ( $C_{8}H_{13}$ ), 97 ( $C_{7}H_{9}O_{2}$ - CO)];  $\gamma_{max}$  (KBr): 1760, 1680, 1273, 1200 cm<sup>-1</sup>;  $\lambda_{max}$  (EtOH): 230 nm (**z** 15100); PMR ( $\delta$ , CDCl<sub>3</sub>): 1.00 (3H, s), 1.68 (3H, br s), 1.86 (3H, s), 2.25 (3H, t, J=2.2 Hz), 2.52-2.75 (2H, m), 4.21 (1H, t, J=7.7 Hz), 5.09 (1H, s).

| C-1 | 31.25  | (t) <sup>*</sup> | C-9  | 81.93  | (d) |
|-----|--------|------------------|------|--------|-----|
| C-2 | 18.86  | (t)              | C-10 | 38.71  | (s) |
| C-3 | 30.20  | (t) <sup>*</sup> | C-11 | 149.07 | (s) |
| C-4 | 120.42 | (s)              | C-12 | 24.06  | (q) |
| C-5 | 124.53 | (d)              | C-13 | 24.35  | (q) |
| C-6 | 170.62 | (s)              | C-14 | 19.88  | (q) |
| C-7 | 136.85 | (s)              | C-15 | 22.60  | (q) |
| 2-8 | 29.52  | (t) <sup>*</sup> |      |        |     |





These signals may be interchanged

The UV and IR data (230 nm and 1760, 1680  $\text{cm}^{-1}$ ) showed the presence of an  $\mathcal{A}, \beta$  -unsaturated- $\gamma$ -lactone molety. The chemical shift of C-6 ( $\delta$  170.62) also indicated that the carbonyl group is included in a lactone ring. Furthermore, the MS data confirmed not only the presence but also the location of the lactone ring - the two peaks at m/e 125 and 109 correspond to fragments obtained by cleavage of the C-9/C-10 bond. As judged from the PMR spectrum, the compound 5 has one tertiary ( $\delta$  1.00) and three olefinic ( $\delta$  1.68, 1.86 and 2.25) methyl groups. The broadening of the singlet at  $\delta$  1.68 and the splitting (2.2 Hz) of the signal at  $\delta$  2.25 is due to the homoallylic coupling between the isopropylidene methyl protons (C-12 and C-13) and the C-8 methylene protons ( cisoid and transold, respectively). The two C-8 protons appear in the region  $\delta$  2.52-2.75 as a complex multiplet because of their close chemical shift on one hand, and on the other the simultaneous geminal, vicinal (with H-9) and homoallylic (cisoid and transoid) coupling. However, after irradiation of the C-9 proton ( $\delta$  4.21) the C-8 protons appear as broad doublets (because of the homoallylic coupling) at  $\delta$ 2.62 and 2.70 (each with  $J_{gem}$  = 16.3 Hz). Furthermore, irradiation of the C-13 methyl protons ( $\delta$  2.25) converted the C-8 protons multiplet into two broad doublets of doublets at  $\delta$  2.60 and 2.77 (each with J $_{
m gem}$ = 16.3 Hz and J $_{
m vic}$ = 7.7 Hz). The broadening of the signals is caused by the left cisoid homoallylic coupling with the C-12 methyl protons.

The formation of the lactone 5 from epoxyisogermacrone 2 can be rationalized as shown in Scheme 1. Clearly, the reaction must be initiated by attack of BF<sub>3</sub> etherate at the carbonyl group leading to the formation of the eudesmane hemi-

ketal intermediate A. The following cleavage of the C-5/C-6 bond afforded the lactone 5.



## Scheme 1

The lactone 5 was also obtained from the ketol 3 when trying to carry out the acid-catalyzed isomerization<sup>3</sup> of the latter to the corresponding fully substituted  $\mathbf{A}, \mathbf{\beta} - \mathbf{A}', \mathbf{\beta}'$ -unsaturated ketone  $\underline{4}^4$ . Thus, on treatment with 100% HCOOH at room temperature for 2 hrs the ketol 3 rearranges into the lactone 5 in 60% yield. The formation of 5 in this case may be considered, as shown in Scheme 2.



Scheme 2

According to the suggested mechanism, the rearrangement involves initial protonation of the carbonyl group followed by the oxygen bridging into the intermediate <u>B</u>. Subsequent protonation of the 3,4-double bond leads to cleavage of the C-5/C-6 bond and formation of the lactone 5.

As could be concluded from Scheme 1 and 2, the rearrangement of the eudesmane intermediates <u>A</u> and <u>B</u> requires the presence of a positive charge centered at C-4. An additional fact which supports such a mechanism is that the ketol <u>4</u> did not undergo this rearrangement. When treated with 100% HCOOH at room temperature for 3 hrs the ketol <u>4</u> was readily converted into the corresponding ester  $6^5$  in 95% yield. Obviously, the conjugated system in <u>4</u> prevents the formation of a <u>B</u>-like intermediate and a simple esterification of the hydroxyl

group takes place instead.



Acknowledgements: The author wishes to thank Dr. Ulla Jackobsson, Department of Organic Chemistry, Royal Institute of Technology, Stockholm, Sweden for the PMR and CMR measurments and the UNDP (project Bul 77/009) for partial support of this work.

## References and Notes

- 1. E.Tsankova, I.Ognyanov and T.Norin, Tetrahedron, 36, 669 (1980)
- Epoxidation of isogermacrone <u>1</u>, cyclization under different conditions and the structures and stereochemistry of the products obtained will be discussed in details elswhere.
- 3. M.Niwa, M.Iguchi and S.Yamamura, Bull.Chem.Soc.Japan, 49, 3137 (1976)
- 4. The compound  $\underline{4}$  was obtained by treatment of  $\underline{3}$  with sodium ethoxide in ethanol.
- 5. Physical data of compound <u>6</u>: colourless oil;  $C_{16}H_{22}O_{3}$  m/e 262 (M+), 216 (M<sup>+</sup>- HCOOH), 201 (M<sup>+</sup>- HCOOH - CH<sub>3</sub>) ; max(film): 1764, 1713,1662,1213 cm<sup>-1</sup>; max(EtOH): 277 nm; PMR (, CDCl<sub>3</sub>): 1.09 (3H, s), 1.80 (3H, br s), 1.89 (3H, s), 2.08 (3H, t, J=2.0 Hz), 2.50 (1H, dd, J=14.0 and 10.0 Hz), 2.98 (1H, dd, J=14.0 and 6.0 Hz), 5.07 (1H, dd, J=10.0 and 6.0 Hz), 8.14 (1H, s).

(Received in UK 7 December 1981)